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Abstract-The behaviour of a relaxing gas in a cylindrical heat-conductivity cell is re-assessed and 
attention drawn to some special circumstances which do not appear to have been noted before. Firstly, 
it is shown that the homogeneous gas phase can be maintained in thermal equilibrium (regardless of the 
effectiveness of homogeneous excitation) by surface effects alone. Secondly, it is shown that a rapidly 
relaxing gas may exhibit all the characteristics of a monatomic gas in respect of the dependence of 

measured conductivity on pressure. 

NOMENCLATURE 

an, b, functions defined in equation 
(n = 1,2). (10); 

I, \ ,, 

specific heat of relaxing internal 
energy mode; 
diffusion coefficient; 
modified Bessel functions of 
order zero; 
mean free path; 
Lewis-Semenov number [equa- 
tion (7)] ; 
number density; 
number of collisions required to 
excite internal mode; 
functions in equations (12)-( 14); 
energy flux; value at inner 
cylinder ; 
radial co-ordinate; 
values of r at inner and outer 
cylinders ; 
translational temperature; 
temperatures of cylindrical sur- 
faces at RI and RZ ; 
defined in equation (6); 
internal mode temperature; 
translational conductivity; 
measured conductivity; 
Eucken-corrected conductivity; 
relaxation time; 
defined in equation (22). 

1. INTRODUCTION 

THERE have been a number of theoretical assess- 
ments of the behaviour of relaxing or reacting 

gases in heat-conductivity cells, the latter usually 
consisting of either parallel (infinite) flat plates 
or of pairs of concentric circular cylinders. In 
what follows we shall confine our remarks to the 
case of relaxing internal energy modes. 

In order to estimate the steady flux of energy 
across the cell it is necessary to know how the 
internal mode excitation takes place in the 
homogeneous phase and, in addition, how both 
the translational (or translational-plus-active) 
and relaxing modes are excited or de-excited on 
collision with the walls. In other words it is 
necessary to know the accommodation coeffici- 
ents for both modes of energy storage. This set 
of boundary conditions makes the algebra 
involved in the solution rather heavy, and the 
direct physical interpretation of the eventual 
results somewhat awkward. The present paper 
attempts to simplify the presentation of the final 
solution as much as possible and, in doing so, 
points to some special circumstances which may 
be of some interest and which appear to have 
been overlooked by previous investigators. 

2. THE GENERAL SOLUTION 

For the sake of completeness we shall begin 
with a brief derivation of the basic equations. 
An exhaustive account is not necessary since they 
have been adequately discussed for a wide range 
of circumstances in, for example, references l-5. 
We shall consider the case of cylindrical sym- 
metry so that, under the steady state conditions, 
the energy equation gives 
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rq = constant. (1) 

Writing T for the temperature of the trans- 
lational-plus-active modes, and assuming that 
the energy content of the relaxing mode can be 
specified in terms of a temperature 9, it can be 
shown (e.g. [4]) that 

q-A$_ ;; n.%--. 

Evaluating the constant in equation 1 at the sur- 
face of the inner cylinder, where r = RI and 
q = ql, leads to the result that 

dT dB 
rhd, + rn9cdr = - RIgI. (3) 

The relaxation equation, which expresses the 
balance between diffusive efflux from and 
excitation of the internal mode in a volume 
element, can be written [4] in the form 

%(rnS$) =y 1 c(i+‘)diY, (4) 

T 

where T is the relevant relaxation time. With the 
knowledge that the pressure must be constant 
throughout the cell, so that the number density n, 
the translational conductivity h and the diffusion 
coefficient 9 are all functions of T, equations 
(3) and (4) form a complete set from which T 
and 8 can, in principle anyway, be determined. 
(N.B. We imply that c, the specific heat of the 
relaxing mode is also a known function of 8. 
In addition, in deriving equations (2) and (4), the 
assumption has been made that the diffusion 
coefficient 9 is the same for all molecules, 
regardless of their internal quantum state; 
this is a reasonable approximation provided that 
the molecules remain in their electronic ground 
state.) 

It is quite justifiable for present purposes to 
simplify equations (3) and (4) by evaluating all of 
n, A, 9, c and 7 at some suitable mean cell 
temperature, and indeed this assumption has 
been made by all previous investigators. Practical 
temperature differences across a cell are invari- 
ably small enough to warrant this assumption. 
Denoting such average values by adding a sub- 
script 0 it can easily be shown that 

d Id+ 

'dr 7% i > 
- a2* = a2/3 , (5) 

where # is either r(dT/dr) or r(d$/dr). The con- 
stants a and /3 are defined so that 

(6) 

where L is a Lewis-Semenov number, given by 

no goco L=--. 
A0 

(7) 

Equation 5 can be solved to show that 

T = Alo + BKo(ar) - p log r + C. (8) 

IO and K. are the zero-th order modified 
Bessel functions [6] and A, B and C are constants 
to be determined. The solution for 9 is of 
similar form to equation (8) with constants which, 
in general, differ from A, B and C. However, 
the appropriate forms of equations (3) and (4), 
together with equations (6) and (7), show that 

19 = - i {Alo + BK,(ar)} - /I log r + C. 

(9) 
Similar results have either been obtained or are 
implied in references l-3 and 5, for example. 

In any practical problem, the temperatures 
of the solid cylindrical surfaces can be con- 
sidered as given quantities; we shall write Twl 
for the temperature of the surface r = RI and 
T w2 for the temperature at r = R2. (N.B. 
Rs > RI.) Then we shall have four boundary 
conditions which, taking account of the tempera- 
ture jumps at RI and Rs, can be written as 

r = RI, 1 
r = RB, 

(10) 
r = RI, 

9 - Tw2 = - b2 
J 

The four quantities al, a2, bl and bz are all 



A RELAXING GAS IN A CYLINDRICAL HEAT-CONDUCTIVITY CELL 133 

positive and are directly related to the accom- 
modation coefficients for translational-plus- 
active energy (aI, a~) and for the relaxing mode 
energy @I, bz), and also to the free paths for 
transfer of the particular form of energy involved 
[4]. There is no need for us to write down the 
explicit forms of an and bn, but we may note that 
they are all, in general, inversely proportional 
to the pressure. The four conditions just 
given are necessary because p in equations (8) 
or (9) must also be considered as an unknown 
constant. The reason is that q1 is, initially, 
unknown and will be determined by the physical 
constants pertaining to the gas and cell in 
question once Twl and Twz are specified. 

The two conditions at r = R2 are replaced in 
reference 1 by the requirement that 8 -+ T as 
r -+ 00, so that SchHfer, Rating and Eucken 
have really considered the problem of an isolated 
wire in an infinite expanse of gas which is, 
asymptotically, in an equilibrium state. When 
R2 is greater than RI by a sufficient amount, this 
approximation to the concentric cylinder case 
may be adequate, but the complete solution for 
finite RZ is not prohibitively complicated and 
indeed has been given by other writers since the 
paper by Schgfer, Rating and Eucken [I] 
appeared. One example of this latter solution 
has been given by Wright [3]. However this 
solution is complicated by the fact that Wright 
is interested in relating a measured conductivity 
to two gas temperatures detected at positions 
TI and TJI such that RI < rI < r11 < R2. This 
extra complication is introduced so as to obtain 
conductivity measurements in which “. . . tem- 
perature discontinuities at the boundaries no 
longer interfere.” The inference is then drawn 
that, if apparent (measured) conductivities 
obtained in this way vary with pressure, such 
variations will signify the presence of relaxation 
effects. We make some comments on these 
matters below. 

Confining attention to the constant B, it can 
be shown after some algebra that 

az+(bz-adPa 
Q 

=T,cl--Tw2, (11) 

where 

Pi = L( 1 -I- L) IV1 + La(bz + Laz) 

[(aRz)-l - W3] 

- L(1 + L) [uzR,l + aal W2] 
(12) 

+ La%zl(bz + Lm)W4, 
I 

pz = L(1 -I- L) WI + La(bl + Lal) 
1 

KafW1 - Wz] - L(1 + L) 

[ai RF1 + Uz Ws] + Laza2 

th + WW4, J 
Q = (1 + ~5)~Wl - (1 + L) 

[a@1 + h)W2 + a(bz + LUZ) WZI] (14) 

+ a2(bl + L~J) (bz + La2) W4. 

The quantities WI to IV4 inclusive are groups of 
Bessel functions as follows, 

WI = lo(aRl)Ko(aRa) - lo(aRz)Ko(aRr), (15) 

WZ = I;(aR1)Ko(aRa) + lo(aRz)Kl(aRl), (16) 

W3 = Il(aRa)Ko(aRl) + lo(d?l)C(aRz), (17) 

IV4 = Il(aR1)Kl(aRz) - I~(&_&(aR1). (18) 

If the quantities Aa and AE are now defined so 
that 

Rlql 
AU = (Twl _ Tw2) log 

Ad 
(Twl - Tw2)*‘g 

AE = Ao(l + L), (20) 

it is possible to re-write equation (I 1) in the form 

i=&+#, 
where 

d = [&log ($)]-‘[j+l + (bl - a@) 
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h, is the measured, or apparent, conductivity 
which can be deduced from any given single 
experiment. XE is the Eucken-corrected or 
equilibrium conductivity, as is clear from equa- 
tions (2) and (7) if we put 9 equal to T. (Equation 
(4) shows that 9 will be equal to T if T = 0.) 

The extent of the difference between Aa and 
hE is summarized in the quantity 4. This shows 
that X, and A&? differ because of the surface 
accommodation effects (a,, b,; n = 1, 2) and 
because of internal mode relaxation in the gas 
phase. This latter effect appears in + through the 
terms Pi, PZ and Q. The magnitude of the effect 
of the various excitation efficiencies is dependent 
on the scale of the cell (i.e. on RI and Ra). 

3. INTERPRETATION OF THE RESULTS 

The final form of the solution given in equa- 
tion (21) is remarkably simple, especially bearing 
in mind that it is (within the framework of the 
initial assumptions) an exact result. For com- 
parison purposes it should be noted that when 
the relaxing internal mode carries no communic- 
able energy, so that L = 0, equation (21) 
reduces to 

1 1 _=- 
h, h, + +O, 

where 

(23) 

ations of 4 with p will occur because of the 
appearance of terms involving aR1 etc., in PI, 
PZ and Q (see equations (12)-(18), inclusive). 

It is most important to notice that all relaxa- 
tion effects are contained in the quantities PI, 
Ps and Q and, what is more, that these terms 
may vanish from 4 if bl = al and b2 = ~2. In 
practical terms these two requirements simply 
mean that the effectiveness of internal mode 
accommodation must compare favourably with 
that of the translational states (however good 
or bad this may be). We reiterate that if bn = an, 
n = 1,2, the measured conductivity Xa is entirely 
uninfluenced by relaxation eficts, no matter how 
large or small the relaxation time may be. This 
special case appears to have been overlooked by 
previous investigators. Whilst one may not 
encounter the case exactly in practice, it may 
well be that one could find bn E a,. The relaxa- 
tion effects, whilst not entirely absent in such a 
case, would certainly be rendered much less 
significant. 

Direct confirmation of the statement that 4 
reduces to the value hO$O//\~ when bn = a, can 
be obtained by noting that conditions [lo] all 
combine to give 

T-a=, d(Td. 1 dr ’ 
r = RI, (25) 

$0 = [x0 1% ($)I -’ [z + 21. (z4) T _ 9 = _ a2 d’Td; ‘) ; r = R2. (26) 

We shall refer to this as the monatomic result. 
Now hE is a fixed function in the sense that it 

does not vary with pressure, and the same is true 
of X0. That /\a varies with pressure is an experi- 
mentally observed fact; equation (21) shows 
that this variation is entirely described by the 
function $. We have remarked before that a, 
and bn vary inversely with the pressure. (Any 
deviation from this mode of variation must be 
due to changes of accommodation coefficient 
with pressure. Such changes are usually reckoned 
to be small over moderate pressure ranges, but 
could possibly become significant if p varied 
over several orders of magnitude.) Since both 
7. and go depend on p-1 it follows [equation 
(6)] that a is proportional to p. Consequently, 
the products aan and abn will, in general, be 
pressure-independent. However, additional vari- 

Since [equations (8) and (9)] 

T - 8 = 1 + k {AZo(ar) + BKo(ar)}, (27) 
( ) 

it follows at once that A = 0 = B. Thus, 
although the relaxation time 7. may be very 
different from zero, the gas behaves as if it was 
in complete thermal equilibrium, and this con- 
dition is brought about entirely by the surface 
accommodation effects. 

It is interesting to examine Wright’s suggestion 
[3] that if temperatures TI and TII, say, are 
measured at radii rI and rII as defined earlier, 
then temperature jump effects do not interfere 
with the conductivity measurement. Under the 
particular conditions bn = an it is readily found 
that 
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log(E) +z +$I-‘, (28) 

which, together with equations (6), (11) and (20), 
shows that 

hfl = Rigi log (r&)[Tr - Tnl-l. (29) 

In this case, therefore, hE can be measured 
directly without interference from surface accom- 
modation effects. What is more, we observe that 
there will be no effect of pressure on these 
measurements. However, it would be wrong to 
infer that the absence of any variations with 
pressure implied the absence of a relaxing mode. 
Equation (29) has been arrived at solely as a 
result of assumptions made about the surface 
influences. It is clear from equations (11-22) 
that surface accommodation efficiencies and 
relaxation effects are most intimately connected 
with one another in the conductivity cell. If 
b, f an then a relaxation effect will appear in the 
measured conductivity, but it will be of a 
magnitude conditioned by the difference between 
bn and a,. It is in fact much safer to argue that 
an absence of any pressure-dependence in 
measurements made using the methods discussed 
in reference 3 is due to the equality of b, and an, 
rather than to assert that the presence of such 
dependence is a direct measure of the relaxation 
effect. 

There is another feature of the general result 
given in equation (21) which does not seem to 
have been pointed out previously. The analysis 
used to derive equation (21) is essentially only 
valid under continuum conditions. If Z. is the 
mean free path this requires that we must only 
use these results if RI 9 10 and RZ - RI B IO. 
The relaxation time TO and diffusion coefficient 
90 can be written in the forms 

78 = NZ&20; CSa, g &2n,, (30) 

where QO is the arithmetic mean molecular speed 
and N the number of collisions required to 
produce thermal equilibrium. Therefore the 
magnitude of a is roughly equal to l/lodN. For 
rapidly relaxing modes like rotation it follows, 
as a general rule, that the conditions aR1 $ 1 

and a(Rg - RI) + 1 are satisfied. The asympto- 
tic expansions of the Bessel functions in 
equations (1 l)-(22) can then be used and it can 
be shown that 

pn L(1 + aan> -1 
azl+ab,+L(l+uan)’ ‘=ly2* (31) 

The significant fact is that the Pn/Q are not 
pressure-dependent (since aan and ab, are not) 
and reference to equations (21) and (22) will 
show that plotting l/ha versus l/p will still lead 
to a straight line, exactly as in the true mon- 
atomic case [equations (23) and (24)], even 
though relaxation eficts are present. One can 
test this assertion by replotting the results of 
Waelbroeck and Zuckerbrodt [7] for hydrogen 
and of Taylor and Johnston [8] for air. In the 
case of reference 7 it has been necessary to read 
off the results from a rather small graph, so that 
some inaccuracies may be present on this 
account. The results of the replotting are shown 
in Fig. 1, from which it is apparent that the 
theoretical surmise made above is borne out in 
practice. 

-2.5 c 

FIG. 1. Experimental results compared with the pre- 
dictions of equations (21) and (31), namely that 

1% 10 F - 1 ( 1 = - loglop + log10 (pAE#) 
a 

where pAE$ is independent of pressure. The solid lines 
have slopes of exactly - 45”. 



136 JGHN F. 

Taylor and Johnston actually remark on the 
linearity of their l/h, versus X/p plot in reference 
8 and in reference 9 go on to exploit this by 
calculating accommodation coefficients for 
several diatomic gases. The theory which they 
employ to do this does not take account of 
relaxation effects and gives a result akin to the 
monatomic solution in equations (23) and (24), 
with he being replaced by XE. It is reasonable 
for us to assume [9] that al = as and br = bz, so 
that the slope of their lines I/X, versus l/p will 
in fact be equal to 

p(I + ~1~~2~ (61 - a1>(1 + aal)L 

~~~llog~~2~R~~ a1 + 1 -i- abl + (1 + a&L > 

(32) 

The results of reference 9 are equivalent to the 
assumption that 61 = al, with, however, some 
allowance being made for the fact that the free 
path involved in al is modified appropriately 
(see, for example, reference 4). Itis clear that, 
even with prior knowledge of the relaxation 
time (and hence of CC) the single measurement 
leading to the quantity in equation (32) is 
insu~~ient to enable one to calculate both al and 
bl. It is also important to observe that any 
temperature variations of the “accommodation 
coefficients” quoted in reference 9 will include 
the effects of variation in the relaxation number 
N with this quantity, a fact which does not seem 
to have been pointed out before. 

Waelbroeck and Zuckerbrodt do not plot 
I/& versus l/p; instead they calculate the 
quantity ( Acs - A,)/( hE - A,) from their measure- 
ments and plot the result against logp [7]. The 
same objection will apply, however, namely that 
al and br cannot both be calculated from a 
single measurement, and indeed it is remarked 
in reference 7 that a sum of rotational and 
translational accommodation coefficients is ob- 
tained from low-pressure experiments and then 
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applied to the reduction of the high-pressure 
data. That this may not be the most desirable of 
procedures is evident from the results quoted 
and discussed in reference 10. 

To summarize briefly, the heat-conductivity 
cell seems to be admirably suited to its primary 
role, which is the measurement of the con- 
ductivity hE, but should be used with reservation 
for the calculation of accommodation effects 
where rapidly relaxing internal modes are 
involved. 
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Resume-Le comportement d’un gaz en relaxation dans une cellule cylindrique de mesure de con- 
ductivitt thermique a Cte r&estime et l’on s’est interessd a certaines circonstances speciales qui ne 
semblent pas avoir Cti: remarqubs auparavant. Tout d’abord, on montre que la phase gazeuse homo- 
gene peut etre maintenue en equilibre thermique (sans s’occuper de l’e%cacitC de l’excitation homo- 
gene) seulement par des effets de surface. Ensuite, on montre qu’un gaz avec une relaxation rapide 
peut presenter toutes les caractbistiques dun gaz monoatomique eu egard B la dependance de Ia 

conductivite mesun% en fonction de la pression. 
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